
MAT8034: Machine Learning

Deep Learning

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: ai.berkeley.edu; SJTU VE445

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Outline

§ History of artificial neural nets
§ Perceptron
§ Multilayer perceptron networks
§ Activation functions
§ Training: backpropagation
§ Modules in modern neural networks

History of artificial neural nets

3

Brief history of artificial neural nets

§ The First wave
§ 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model
§ 1958 Rosenblatt introduced the simple single layer networks now called

Perceptrons
§ 1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single

layer perceptrons, and almost the whole field went into hibernation

§ The Second wave
§ 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was

rediscovered and the whole field took off again

§ The Third wave
§ 2006 Deep (neural networks) Learning gains popularity
§ 2012 made significant break-through in many applications

Biological neuron structure

§ 细胞结构
§ 细胞体
§ 树突
§ 轴突
§ 突触末梢

Slide credit: Ray Mooney

Biological neural communication

§ 细胞膜间的电位表现出的电信号称为动作电位
§ 电信号从细胞体中产生，沿着轴突往下传，并且导
致突触末梢释放神经递质介质

§ 介质通过化学扩散从突触传递到其他神经元的树突
§ 神经递质可以是兴奋的或者是抑制的
§ 如果从其他神经元来的神经递质是兴奋的且超过某
个阈值，将会触发一个动作电位

Slide credit: Ray Mooney

McCulloch-Pitts neuron model [1943]

§ Model the network as a graph, where the units are nodes, and
the synaptic connections are weighted edges from node 𝑖 to
node 𝑗, with the weight as 𝑤!,#

§ The input of the unit is:
net! =%

"
𝑤!," ' 𝑜"

§ The output of the unit is:
§ 0 if net! < 𝑇!; 1 otherwise
§ 𝑇! is the threshold

Slide credit: Ray Mooney

Single-layer perception by Rosenblatt [1958]

Slide credit: Weinan Zhang

𝜎 𝜎

Training perception

Slide credit: Weinan Zhang

𝜎 𝜎

Limitation of perception

§ Minsky and Papert [1969]
showed that some rather
elementary computations,
such as XOR problem, could
not be done by Rosenblatt’s
one-layer perceptron

§ However Rosenblatt believed
the limitations could be
overcome if more layers of
units to be added, but no
learning algorithm known to
obtain the weights yet

Solution: Add hidden layers

§ Adding hidden layers to learn more general scenarios

Slide credit: Weinan Zhang

Computation

§ Single-layer function
§ 𝑓! 𝑥 = 𝜎(𝜃" + 𝜃#𝑥# + 𝜃$𝑥$)

§ Multi-layer function
§ ℎ# 𝑥 = 𝜎(𝜃" + 𝜃#𝑥# + 𝜃$𝑥$)
§ ℎ$ 𝑥 = 𝜎 𝜃% + 𝜃&𝑥# + 𝜃'𝑥$
§ 𝑓! 𝑥 = 𝜎(𝜃(+ 𝜃)ℎ# + 𝜃*ℎ$)

Non-linear activation functions

§ Adding non-linearity allows the network to learn and represent
complex patterns in the data

§ Common non-linear activation functions

[source: MIT 6.S191 introtodeeplearning.com]

𝜎

𝜎 𝜎 𝜎

𝜎

𝜎 𝜎

𝜎

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

w22

w32

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

𝜎
𝜎 𝜎𝜎

Vectorization

The same equation, formatted with matrices:

The same equation, formatted more compactly by introducing variables representing each matrix:

𝜎 𝜎

𝜎 𝜎

𝜎

𝜎

𝜎
𝜎 𝜎𝜎

2-Layer, 2-Neuron Neural Network

Shape (1, 3).
Input feature vector.

Shape (3, 2).
Weights to be learned.

Shape (1, 2).
Outputs of layer 1,
inputs to layer 2.

Shape (1, 2).
Outputs of layer 1,

inputs to layer 2.

Shape (2, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

𝜎

𝜎

Multi-Layer Neural Network

§ Input to a layer: some dim(x)-dimensional input vector
§ Output of a layer: some dim(y)-dimensional output vector

§ dim(y) is the number of neurons in the layer (1 output per neuron)

§ Process of converting input to output:
§ Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.

The result has shape (1, dim(y)).
§ Apply some non-linear function (e.g. sigmoid) to the result.

The result still has shape (1, dim(y)).

§ Big idea: Chain layers together
§ The input could come from a previous layer’s output
§ The output could be used as the input to the next layer

Deep Neural Network

…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) 𝝈 = nonlinear activation function𝜎

Universal approximation theorem

§ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366

Increasing power of approximation

§ With more neurons, its approximation power increases. The
decision boundary covers more details (risk of overfitting)

§ Usually in applications, we use more layers with structures to approximate complex
functions instead of one hidden layer with many neurons

http://playground.tensorflow.org/

Connection to the kernel methods

25

Connection to the kernel methods

§ Kernel methods
§ Design the non-linear feature map function
§ The performance significantly depends on the choice of feature map
§ Feature engineering: process of choosing the feature maps

§ Neural network
§ Automatically learn the right feature map
§ Requires often less feature engineering

Training: Backpropagation

27

Review: Derivatives and Gradients

§ What is the derivative of the function ?

§ What is the derivative of g(x) at x=5?

Review: Derivatives and Gradients

§ What is the gradient of the function ?
§ Recall: Gradient is a vector of partial derivatives with respect to

each variable

§ What is the derivative of g(x, y) at x=0.5, y=0.5?

1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h

2-D Optimization

https://machinelearningmastery.com/2d-test-functions-for-function-optimization/

Gradient descent

§ Perform update in downhill direction for each coordinate
§ The steeper the slope (i.e. the higher the derivative) the bigger the step

for that coordinate

§ E.g., consider:

§ Updates:

g(w1, w2)

w2 w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1 w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates in vector notation:

with:

w w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

= gradient

−

−

−

§ Idea:
§ Start somewhere
§ Repeat: Take a step in the gradient direction

Gradient descent

https://ludovicarnold.com/teaching/optimization/gradient-descent/

Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775

Optimization procedure: Gradient descent

§ init

§ for iter = 1, 2, …
w

§ : learning rate --- tweaking parameter that needs to be
chosen carefully
↵

w w + ↵ ⇤ rg(w)−

Training Neural Networks

§ Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

§ Step 2: Compare predictions with the true y values, using a loss function
§ Higher value of loss function = bad model
§ Lower value of loss function = good model
§ Example: zero-one loss: count the number of misclassified inputs
§ Example: log loss (derived from maximum likelihood)
§ Example: sum of squared errors (more on this soon)

§ Step 3: Use numerical method (e.g. gradient descent) to minimize loss
§ Loss is a function of the weights. Optimization goal: find weights that minimize loss

𝜎 𝜎

Optimization Procedure: Gradient Descent

§ init

§ for iter = 1, 2, …

w

§ : learning rate --- tweaking parameter that needs to be
chosen carefully
↵

Loss

Computing Gradients

n How do we compute gradients of these loss functions?
n Repeated application of the chain rule:

If

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)

Feed forward vs. Backpropagation

Backpropagation - demo

§ Backpropagation demo

https://shuaili8.github.io/Teaching/VE445/L6%20backpropagation%20demo.html

Make a prediction

Make a prediction (cont.)

Make a prediction (cont.)

Backpropagation

2

Backpropagation (cont.)

Backpropagation - example

§ Consider the simple network below:

§ Assume that the neurons have sigmoid activation function
§ Perform a forward pass on the network and find the predicted output
§ Perform a reverse pass (training) once (target = 0.5) with 𝜂 = 1
§ Perform a further forward pass and comment on the result

Backpropagation – example (cont.)

Fun Neural Net Demo Site

§ Demo-site:
§ http://playground.tensorflow.org/

http://playground.tensorflow.org/

Modules in modern neural networks

Multi-layer perceptron (MLP)

§ Denote the matrix multiplication operation with (𝑊, 𝑏) as
§ MM+,- 𝑥 = 𝑊𝑥 + 𝑏

§ Denote 𝜎 as the activation function
§ Denote 𝑊[%], 𝑏[%] as the weight/bias of the 𝑟-th layer
§ Then the MLP can be represented as

Residual connections

§ An important network structure in CV: ResNet

§ Residual connections

§ A much simplified ResNet (not the classic one)
§ Composition of many residual blocks followed by a matrix multiplication

Classic ResNet uses convolution layers instead of vanilla matrix multiplication, and adds batch normalization between convolutions and activations.

Residual connections (cont’d)

§ Advantages of residual connections
§ Enable identity mapping, Improve the ability of model expression
§ Mitigate gradient disappearance, Ease training of deep networks

§ Applications
§ Computer Vision (ResNet)
§ Natural Language Processing (Transformer encoder/decoder block)
§ Reinforcement Learning (policy/value networks)

Layer normalization

§ Maps a vector to a more normalized vector
§ A sub-module of the layer normalization

§ is the empirical mean of the vector

§ is the empirical standard deviation

§ Intuition: normalized to having empirical mean zero and empirical
standard deviation 1

Layer normalization (cont’d)

§ More general mean and variance

§ 𝛽, 𝛾 are learnable parameters

§ Properties: Scaling-invariant

§ Applications
§ Transformer / BERT / GPT / RL policy networks

Convolutional layers

§ Intuition
§ Given an input matrix (e.g. an

image)
§ Use a small matrix (called filter or

kernel) to screening the input at
every position of the input matrix

§ Put the convolution results at
corresponding positions

Convolutional layers (cont’d)

§ Advantage
§ Sparse connections

§ Weight sharing

MLP
Edges: 5*5
Parameters: 5*5

Convolution
Edges: 3*3+2*2
Parameters: 3

Interpretation of convolution

§ Convolution can be used to find
an area with particular patterns

§ Example
§ The filter in the left represents the

edge in the right, which is the
back of a mouse

Interpretation of convolution (cont’d)

§ When the filter moves to the back of the mouse, the convolution
operation will generate a very large value

§ Otherwise, it generates a very small value

Summary

§ History of artificial neural nets
§ Perceptron
§ Multilayer perceptron networks
§ Activation functions
§ Training: backpropagation
§ Modules in modern neural networks

