MAT8034: Machine Learning

Deep Learning

Fang Kong
https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: ai.berkeley.edu; SJTU VE445

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Outline

History of artificial neural nets
Perceptron

Multilayer perceptron networks
Activation functions

Training: backpropagation

Modules in modern neural networks

History of artificial neural nets

Brief history of artificial neural nets

= The First wave

= 1943 McCulloch and Pitts proposed the McCulloch-Pitts neuron model

= 1958 Rosenblatt introduced the simple single layer networks now called
Perceptrons

" 1969 Minsky and Papert’s book Perceptrons demonstrated the limitation of single
layer perceptrons, and almost the whole field went into hibernation

= The Second wave

= 1986 The Back-Propagation learning algorithm for Multi-Layer Perceptrons was
rediscovered and the whole field took off again

= The Third wave

= 2006 Deep (neural networks) Learning gains popularity
= 2012 made significant break-through in many applications

Biological neuron structure

= LS
= ZHREIK
RPES
" HHER =

" SRREARIH -

Slide credit: Ray Mooney

Biological neural communication

. éHﬂH’@H%I‘EﬂE’\JEE'Aﬁi%” HAVEB (S SFR A ERAL .
= FH MQHHH’ETMZKEJFL_:, EEE?&E‘I‘% , HES
ﬂs&%ﬁﬁ‘%hﬁﬂﬁﬁﬂ BRI R
» NERBEEUEY BN AMEIBRE EL R oAIRIER
» B[R A]LAENEREE 2HHEIAY
» UIRMNEMHRE RSB REXENBETE .
NRE , Baitag— 1 a{EBRAL

Slide credit: Ray Mooney

McCulloch-Pitts neuron model [1943]

" Model the network as a graph, where the units are nodes, and
the synaptic connections are weighted edges from node i to

node j, with the weight as w; ;

" The input of the unit is:

_ Wi, . Wi
netj = _Wj,i * 0 3 Wi
l

" The output of the unit is: ot
= 0if net; < Tj; 1 otherwise

8 T] is the threshold

Slide credit: Ray Mooney

net:

Single-layer perception by Rosenblatt [1958]

1 Rosenblatt [1958] i#

— R H BN ESS
B—NE "B 18
Inputs < . v cp(»Z._O Output STHITEIRIEE

- Hard § (Epﬁgﬁg)
e 0 SEENEHREIAE
AT —53ESH

NEw,,
Foul BUERREL - y=1: &1
-y =-1: %502
por Qunn) e@={ et

Slide credit: Weinan Zhang

Training perception

ml][+
w; = w; + 1y — P)x;
b=b+nly—39)

v @(;)_»_O Output O NEURINIZEAT :

[nputs < —= "
pard - WRMHIER, WA
HITIEAE
- NRWEHS T, I
IEBINRINE
F SEESE R - WNRELET, B
IEBINRINE
o 3)1 ifz=>0
y=e (iZl wix; +) o (2) = { —1 otherwise

Slide credit: Weinan Zhang

Limitation of perception

" Minsky and Papert [1969]
showed that some rather .
elementary computations, j
such as XOR problem, could
not be done by Rosenblatt’s
one-layer perceptron x

- |leolele|le
s

= However Rosenblatt believed L] 94 o

the limitations could be T T \
‘ 1 ‘ »

overcome if more layers of Lo,
units to be added, but no

learning algorithm known to

obtain the weights yet

Solution: Add hidden layers

= Adding hidden layers to learn more general scenarios

class 1
class 2

REFEDR: xwi +x,w, +b =0

class 2

class 2 g /|\|3,%\ g-l_l-jp
ROESLH
XA —
FIDFRE

5
class 2 o class 2

Slide credit: Weinan Zhang

Computation

= Single-layer function) fala) = 060 + 11 + 6:x7)
X
" fo(x) = 0(8y + 01x1 + 03x,) <N
(\,‘w /) N 3
x %

" Multi-layer function
" hy(x) =0(0y + O01x; + 0,x5)

" h,(x) = 0d(0;3 + 0,x1 + O:x5) Q fo ()
" fo(x) = 0(b¢ + 6,hy + O3h;) ha () | Qi) (\W ha ()
5D

Non-linear activation functions

= Adding non-linearity allows the network to learn and represent
complex patterns in the data

= Common non-linear activation functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelU)
Q(Z) ol2) 0(2)
0.8} '@ | ' 05| 9@ | | 4 9')
06} 3}
0
0.4} 21
0.2} e 1]
0 4 ’ -1 : 0 -
-5 0 5 -5 0 5 -5 0 5
1 7= 8%
o — o z)=max (0, z
@)= == 0@) = 5= o(z) (0,)
@)= 0@ (1-0(2) ()= 1-0(@)? ') =10’ otheres
o' (z)=0(2) o(z) o \z)= 0(2) o ~ o, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

2-Layer, 2-Neuron Neural Network

%\

2

1S

/

2-Layer, 2-Neuron Neural Network

intermediate output h;

W1

Wi1
X, W31 Z
W3q
X Wi
W»)
)3
X3 W32

,14/

intermediate output hy = (w121 + w9 + wW31x3)

1
. 1 . (3—('11,!11:1:1—I—'wgl:1_:2—|—'u..v31:1.:3)

2-Layer, 2-Neuron Neural Network

intermediate output h;

intermediate output h,

intermediate output ho = o (w21 + Wosxs + wW32x3)
1

1 + (_3—(’11,’12.’1}1—I—’U)QQ.’IJQ—l—’u,"32.’l.¢3)

2-Layer, 2-Neuron Neural Network

> >

Wi1
X, W31
W31
X5 Wi
W»)
X3 W3» .
Y

—_
2 /1/ intermediate output h,

== O'("U) 1]7... 1 + W2]7*2)
1

| (_2_("1-"1 hi+wahg)

intermediate output h;

W1

W,

2-Layer, 2-Neuron Neural Network

W1
intermediate output h
W71 2 —p 1
X1 Wi
W33
S et
X, Wi, W,
W7o
2 /1/- intermediate output h
X3 Wgz—; P 2

y = 6(wihy + wahs)

(wio(wiirr + worxe + w31x3) + woo(wisxry + waaks + wWs32xs3))

Vectorization

y =0 (wihy + wahs)
=0 (w10(w1171 + w21 + w3123) + Wwo O W12x1 + W22X2 + W32T3))

The same equation, formatted with matrices:

w11 W2
0} [1 %o @3 } wo1 W29
w31 W32

= 0 ([W11T1 + W12 + W31T3 W12T1 + W22X2 + W32T3 D
— [hi ho]

W9

U([h"l]2:2 } [el]) = O-("U,.’l]‘lvl + '1.1)2}),2) =

The same equation, formatted more compactly by introducing variables representing each matrix:

g(x X Wiayer 1) = h o(h x W, A o | =g

2-Layer, 2-Neuron Neural Network

O-(xr X UTl ayer 1) =i

TN

Shape (1, 3). Shape (3, 2). Shape (1, 2).
Input feature vector. Weights to be learned. Outputs of layer 1,
inputs to layer 2.

o (h X "ﬁ]["rlaycr 2) =i

N

Shape (1, 2). Shape (2, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

Multi-Layer Neural Network

" |nput to a layer: some dim(x)-dimensional input vector

= Qutput of a layer: some dim(y)-dimensional output vector
" dim(y)is the number of neurons in the layer (1 output per neuron)

" Process of converting input to output:
= Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.
The result has shape (1, dim(y)).
= Apply some non-linear function (e.g. sigmoid) to the result.
The result still has shape (1, dim(y)).

= Big idea: Chain layers together
" The input could come from a previous layer’s output
" The output could be used as the input to the next layer

Deep Neural Network

29)
Z§1> zéZ)
Z§1) Z?gz)
(1) (2)
2 (1) 2 (2)

A oy

()
J

4 A"
2 2{0UT)
n
Zén—l) 2;2
3 3
(OUT)—»p
<3
- (n)
2 Z 5 (n)
Z (k -1) o = nonlinear activation function

Universal approximation theorem

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

ni(x) = Relu(—5x —7.7)
n2(x) = Relu(—1.2x — 1.3)
na(x) = Relu(1.2x + 1)
ng(x) = Relu(1.2x — .2)
ns(x) = Relu(2x — 1.1)
ne(x) = Relu(5x — 5)

Z(x) = —ny(x) — nolx) — na(x)

+nql(x) + ns(x) + ng(x)

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366

Increasing power of approximation

= With more neurons, its approximation power increases. The
decision boundary covers more details (risk of overfitting)

3 hidden neurons 6 hidden neurons 20 hidden neurons

= Usually in applications, we use more layers with structures to approximate complex
functions instead of one hidden layer with many neurons

http://playground.tensorflow.org/

Connection to the kernel methods

25

Connection to the kernel methods

= Kernel methods
" Design the non-linear feature map function
" The performance significantly depends on the choice of feature map

* Feature engineering: process of choosing the feature maps

" Neural network

= Automatically learn the right feature map —

= Requires often less feature engineering —

Training: Backpropagation

27

Review: Derivatives and Gradients

= What is the derivative of the function ¢g(z) = z° +3?
dg
o ==
= What is the derivative of g(x) at x=57
dg
dz

20

le—5 = 10

Review: Derivatives and Gradients

= What is the gradient of the function g(z,y) = T2y ?

= Recall: Gradient is a vector of partial derivatives with respect to
each variable

— ﬁ - p— —

o 2xY
VQ: p—
o f 2
L Jy - [&

= What is the derivative of g(x, y) at x=0.5, y=0.57

2(0.9)(0.5 0.5
Vg|z=0.5y=0.5 = ((0)5(2)) — | 095

1-D Optimization
)

Q(UJO) -------------------

" Could evaluate g(wg 4+ h) and g(wy — h)

" Then step in best direction

" Or, evaluate derivative: g{;wo) :}ILIE)I%) g(wo)2hg(0 —)

= Tells which direction to step into

2-D Optimization

https://machinelearningmastery.com/2d-test-functions-for-function-optimization/

Gradient descent

= Perform update in downhill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: ¢g(wy,ws)

= Updates in vector notation:

= Updates:
dg
W1 < W1 — & * (9?1]1 (wlwa) w%w—a*vwg(’w)
dg 09 ()

Wo <— W9 — (¢ *

Ows (wla UJZ) with: V,g(w) = [8(%1 (w)] = gradient

Gradient descent

= |dea:
= Start somewhere

= Repeat: Take a step in the gradient direction

,,,,, —6tV f (xo)
o
P, e
N
/ — 0tV F(%7)
v //"
/)
/ :!/) y
/ \ /
i { L~) / VARV B level sets of f
\'\ \ < /// // Y/
RN - /_,.// // —3 gradient update

https://ludovicarnold.com/teaching/optimization/gradient-descent/

Gradient in n dimensions

Optimization procedure: Gradient descent

" Init

= for 1iter =1, 2, ..

w— w —a*x Vg(w)

" «v:learning rate --- tweaking parameter that needs to be
chosen carefully

Training Neural Networks

= Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

ol X Wissera) =k ol X Wesraso | =4y
= Step 2: Compare predictions with the true y values, using a loss function
» Higher value of loss function = bad model
= Lower value of loss function = good model
= Example: zero-one loss: count the number of misclassified inputs
» Example: log loss (derived from maximum likelihood)
" Example: sum of squared errors (more on this soon)

= Step 3: Use numerical method (e.g. gradient descent) to minimize loss
" |Loss is a function of the weights. Optimization goal: find weights that minimize loss

Optimization Procedure: Gradient Descent

" inlt W
= for 1iter =1, 2, ..
w <+ w —aV. LoSS (w)

= (¢:learning rate --- tweaking parameter that needs to be
chosen carefully

Computing Gradients

How do we compute gradients of these loss functions?

= Repeated application of the chain rule:

f f(x) = g(h(z))
Then f'(z) = ¢ (h(z))h' (z)

—> Derivatives can be computed by following well-defined procedures

Feed forward vs. Backpropagation

Compare outputs with correct
Outout unit é 0 v, =1(z) answer to get error derl\':z_tlves
utput units E_
Z = z Wi Vi l l a, v =1
e etz dE _ oE ay,
0z, ay, 0z,
Y = f(zk) £ = y £
) 1Z
2 = 2 Wik Y, Yk leout <
/€ H1 oE _ dE Vi
(')Zk ("yk (')Zk (’E B ()E
y]:f(zj) .) = 2 W}k?
Vi keHz2 %%
W, Zj = E Wi Xi oOF : 9E 3y,
I € Input Wi dz; dy; 9z
Input units

Backpropagation - demo

= Backpropagation demo

https://shuaili8.github.io/Teaching/VE445/L6%20backpropagation%20demo.html

Make a prediction

u,J(lrl net(ll) hgl)

inputs 2 (2) outputs labels

Input layer hidden layer output layer
Two-layer feedforward neural network

Feed-forward prediction:

(1 1)
AV = 0y (netl?) = fa) (Y wi z,m) Yk = f(o)(net)) = Zu,k)h(
= > hgl) » Yk

where et =Y ulVa, net® = 3" wDhl)

J

Make a prediction (cont.)

u’(erz netgl) h(ll)

(2) outputs labels

N Wk s

Yk
D" @

input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

hﬁ“ = f(l)‘-’”"gl]’ = fy(}_ “';.ln)e‘r’”) Yk = f(i)(‘”eti-) = () “l(u)hﬁ)
m .)

A (— Tm) > h;l) > Yk

(1) 1) ap(2) _ (2), (1)
Where n(tj — Z u.\}.n?-l m netk — Z lLthJ
J

m

Make a prediction (cont.)

1) ,(1
w§1722 netg)hg)

inputs i (2) outputs labels

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

BY = fy(net{)) = fy O wiham) vk = fay(neti’) = fi (3 wijh”)

’" o k1) J 2 faey
rhj » Yk

3 S (1) o8 . (2),(1)
where net;” = Z W mTm net,” = Z w), :h;

m J

Backpropagation

wj(lrl netgl) h(ll)

inputs outputs labels

1

L2

Input layer

hidden layer

output layer

Two-layer feedforward neural network

Feed-forward prediction:

Assume all the activation functions are sigmoid

Error function E = 1 3, (yx — di)?
g_ﬁ = Y — di
iﬁ%::ﬂmhwﬁ?ﬂén==m(1—ywhy)
= 32 = (e — di)ye(1 —)b

(2) (2) _

= wi) — wiy — nys — i)k — ye)h)

B = fay (netl?) = fy (O wihem) vk = Fiay(meti?) = fio (D

m J

w

@),)
kM

.....

(1) '
h;

net® = 3w
J

»
>

)

Y

Backpropagation (cont.)

inputs outputs labels e Error function E = § 3, (yx — di)?
(2) OE __
- " ® oy Yk T di
j
9_' Q e Dy = (1 — y)wi?)
J
2)

n oh” (1) (1) (1)
9&, O di 2oy —) (rets?) 2m = 1" (1= 1V) @

= 9% = A (1 - h§-”) >k w;(fj) (Y& — i)Yk (1 — Y)Tm

J,m

Input layer hidden layer output layer

2
= J(lr)n < w(l) h§-1) (1 - h§-”) Dk wl(c,;'(yk — di)yk(l — Yk)Tm

Two-layer feedforward neural network

Feed-forward prediction:

h“) = f()(net)) f()(Z (l)l‘m) y;l— f(o (net) f(o (Z](\I‘J)hgl))

m J
7= (21,0000) > KV > Uk

v[here nett) =" wll) 2., nety) =3 wi b\

J

Backpropagation - example

" Consider the simple network below:

= Assume that the neurons have sigmoid activation function
= Perform a forward pass on the network and find the predicted output

= Perform a reverse pass (training) once (target =0.5) withn = 1
" Perform a further forward pass and comment on the result

Backpropagation — example (cont.)

net; hy

(i) Input 0.1 / \

Input to top neuron = (0.35 x 0.1) + (0.9 x 0.8) = 0.755. Out = 0.68. A =035 \ /] 0.3 nets y
Input to bottom neuron = (0.9 x 0.6) + (0.35 x 0.4) = 0.68. Out = 0.6637. 08 — ™M
\ — Output

Input to final neuron = (0.3 x 0.68) + (0.9 x 0.6637) = 0.80133. Out = 0.69.
O.V\ w, U

(ii) New weights for output layer: g;iu(t) . AN 5.9
Wl =wl — (y ~ t)y(1 ~ y)hs o s 2
— 0.3 — (0.69 — 0.5) x 0.69 x (1 — 0.69) x 0.68) = 0.272392.
w2t = w2 — (y — t)y(1 - y)hs

=0.9— (0.69 — 0.5) x 0.69 x (1 —0.69) x 0.6637) = 0.87305.
New weights for hidden layer:
w3t = w3 — (y — t)y(L — y)wihi(1 — h1)A
=2
whT =7?

w6t =7

Fun Neural Net Demo Site

" Demo-site:
= http://playground.tensorflow.org/

http://playground.tensorflow.org/

Modules in modern neural networks

Multi-layer perceptron (MLP)

Denote the matrix multiplication operation with (W, b) as
u MMW,b (X) — WX + b

A
P X
AW

Denote o as the activation function

Denote Wl pl7l as the weight/bias of the r-th layer
Then the MLP can be represented as

MLP(z) = MMy 11 41 (0 (MMyptr—11 pir—11 (0°(- - - MMy pri ())))

Residual connections

" An important network structure in CV: ResNet
MLP(x)

ResNEtS(x) g

= Residual connections T | | x
Res(z) = z + o(MM(oc(MM(z2))))
= A much simplified ResNet (not the classic one)

= Composition of many residual blocks followed by a matrix multiplication
ResNet-S(x) = MM(Res(Res(- - - Res(z))))

Classic ResNet uses convolution layers instead of vanilla matrix multiplication, and adds batch normalization between convolutions and activations.

Residual connections (cont’d)

= Advantages of residual connections
" Enable identity mapping, Improve the ability of model expression

= Mitigate gradient disappearance, Ease training of deep networks

= Applications
= Computer Vision (ResNet)
= Natural Language Processing (Transformer encoder/decoder block)
= Reinforcement Learning (policy/value networks)

Layer normalization

" Maps a vector to a more normalized vector 5
zo—[i

= A sub-module of the layer normalization =— LN-S(z)=| ¢
"= Li=1% s the empirical mean of the vector tm—i

.

m
m . o ..
"= \/Z’=1£§”) s the empirical standard deviation

" |[ntuition: normalized to having empirical mean zero and empirical
standard deviation 1

Layer normalization (cont’d)

* More general mean and variance

LN(z) = 8+~ -LN-S(2) =

" 3,y are learnable parameters
" Properties: Scaling-invariant
LN(MMow ab(2)) = LN(MMps(2)), Vo > 0.

= Applications
* Transformer / BERT / GPT / RL policy networks

Convolutional layers

" |ntuition
" Given an input matrix (e.g. an
image)
* Use a small matrix (called filter or

kernel) to screening the input at
every position of the input matrix

= Put the convolution results at
corresponding positions

input
-1)*1+ 0*0 + 1%*2
+(-1)*5+ 0*4 + 1*2
+(-1)*3 + 0*4 + 1%5
=0

Convolutional layers (cont’d)

= Advantage

= Sparse connections

= Weight sharing

MLP
Edges: 5*5
Parameters: 5*5

Convolution
Edges: 3*3+2*2
Parameters: 3

Interpretation of convolution

= Convolution can be used to find
an area with particular patterns

" Example

0 30 |0 0 0

= The filter in the left represents the

edge in the right, which is the /
back of a mouse \ g

/
7

|
L3S

Interpretation of convolution (cont’d)

= \When the filter moves to the back of the mouse, the convolution
operation will generate a very large value

0|00 0 0 30 0|jojo|0 0 30 (0
0|00 50 | 50 | 50 0|j0|0]|0 30|10 0
0(0]|0 20 (50| 0 0 0|00 |30 |0 0 0
0|00 [S0(50(0 0 * 0|0|0[30)]0 0 0
of(0|0 50 |50|0 0 0|0|0[30)]0 0 0
0|0|0 |50(50]|0 0 0(0|j0 (300 0 0
000 [S0(S0(0 0 0|0j0|0O 0 0 0
Visualization of the Pixel representation of the receptive Pixel representation of filter
receptive field field

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

Oth Ise, It t mall

erwise, It generates a very small value
0 [0 (30 |46 [500 [100)]0 olofo]o o [30]o0
o (400 [o [o [o [0 ololoTlo 13010 To
a0 (0 400 o [0 [0 olTolol30 10 1o To
{ 40|20(0 [0 |0 [0 [0 * ofofof30[0 [0 [0
a o [s0lo [o [o [o [o olofof30]o [o [o
—=>> [0 [0 [0]0 [0 [0 |0 o[ofo[300 [0 [0
7 25250 [s0]0 [o [0 olololo Jo |o o

Visualization of the filter on the image Pixel representation of receptive field Pixel representation of filter

Multiplication and Summation=0

Summary

History of artificial neural nets
Perceptron

Multilayer perceptron networks
Activation functions

Training: backpropagation

Modules in modern neural networks

